C4 Vectors

1. June 2010 qu. 6

Lines l_{1} and l_{2} have vector equations $\quad \mathbf{r}=\mathbf{j}+\mathbf{k}+t(2 \mathbf{i}+a \mathbf{j}+\mathbf{k})$ and $\mathbf{r}=3 \mathbf{i}-\mathbf{k}+s(2 \mathbf{i}+2 \mathbf{j}-6 \mathbf{k})$ respectively, where t and s are parameters and a is a constant.
(i) Given that l_{1} and l_{2} are perpendicular, find the value of a.
(ii) Given instead that l_{1} and l_{2} intersect, find
(a) the value of a,
(b) the angle between the lines.
2. Jan 2010 qu. 2

Points A, B and C have position vectors $-5 \mathbf{i}-10 \mathbf{j}+12 \mathbf{k}, \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $3 \mathbf{i}+6 \mathbf{j}+p \mathbf{k}$ respectively, where p is a constant.
(i) Given that angle $A B C=90^{\circ}$, find the value of p.
(ii) Given instead that $A B C$ is a straight line, find the value of p.
3. Jan 2010 qu. 9

The equation of a straight line l is $\mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)+t\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right) . O$ is the origin.
(i) The point P on l is given by $t=1$. Calculate the acute angle between $O P$ and l.
(ii) Find the position vector of the point Q on l such that $O Q$ is perpendicular to l.
(iii) Find the length of $O Q$.
4. June 2009 qu. 7
(i) The vector $\mathbf{u}=\frac{3}{13} \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is perpendicular to the vector $4 \mathbf{i}+\mathbf{k}$ and to the vector $4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
Find the values of b and c, and show that u is a unit vector.
(ii) Calculate, to the nearest degree, the angle between the vectors $4 \mathbf{i}+\mathbf{k}$ and $4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
5. Jan 2009 qu. 7
(i) Show that the straight line with equation $\mathbf{r}=\left(\begin{array}{c}2 \\ -3 \\ 5\end{array}\right)+t\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$ meets the line passing through $(9,7,5)$ and $(7,8,2)$, and find the point of intersection of these lines.
(ii) Find the acute angle between these lines.
6. June 2008 qu. 4

Relative to an origin O, the points A and B have position vectors $3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ respectively.
(i) Find a vector equation of the line passing through A and B.
(ii) Find the position vector of the point P on $A B$ such that $O P$ is perpendicular to $A B$.
7. June 2008 qu. 6

Two lines have equations

$$
\mathbf{r}=\left(\begin{array}{c}
1 \\
0 \\
-5
\end{array}\right)+t\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{c}
12 \\
0 \\
5
\end{array}\right)+s\left(\begin{array}{c}
1 \\
-4 \\
-2
\end{array}\right) .
$$

(i) Show that the lines intersect.
(ii) Find the angle between the lines.
8. Jan 2008 qu. 1

Find the angle between the vectors $\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
9. Jan 2008 qu. 5

The vector equations of two lines are

$$
\mathbf{r}=(5 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k})+s(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}) \quad \text { and } \quad \mathbf{r}=(2 \mathbf{i}-2 \mathbf{j}+7 \mathbf{k})+t(2 \mathbf{i}-\mathbf{j}-5 \mathbf{k}) .
$$

Prove that the two lines are
(i) perpendicular,
(ii) skew.
10. June 2007 qu. 9

Lines L_{1}, L_{2} and L_{3} have vector equations

$$
\begin{aligned}
& L_{1}: \mathbf{r}=(5 \mathbf{i}-\mathbf{j}-2 \mathbf{k})+s(-6 \mathbf{i}+8 \mathbf{j}-2 \mathbf{k}), \\
& L_{2}: \mathbf{r}=(3 \mathbf{i}-8 \mathbf{j})+t(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}), \\
& L_{3}: \mathbf{r}=(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})+u(3 \mathbf{i}+c \mathbf{j}+\mathbf{k}) .
\end{aligned}
$$

(i) Calculate the acute angle between L_{1} and L_{2}.
(ii) Given that L_{1} and L_{3} are parallel, find the value of c.
(iii) Given instead that L_{2} and L_{3} intersect, find the value of c.
11. Jan 2007 qu. 3

The points A and B have position vectors \mathbf{a} and \mathbf{b} relative to an origin O, where $\mathbf{a}=4 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{b}=-7 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}$.
(i) Find the length of $A B$.
(ii) Use a scalar product to find angle $O A B$.
12. Jan 2007 qu. 10

The position vectors of the points P and Q with respect to an origin O are $5 \mathbf{i}+2 \mathbf{j}-9 \mathbf{k}$ and $4 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}$ respectively.
(i) Find a vector equation for the line $P Q$.

The position vector of the point T is $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
(ii) Write down a vector equation for the line $O T$ and show that $O T$ is perpendicular to $P Q$.

It is given that $O T$ intersects $P Q$.
(iii) Find the position vector of the point of intersection of $O T$ and $P Q$.
(iv) Hence find the perpendicular distance from O to $P Q$, giving your answer in an exact form.
13. June 2006 qu. 4

The position vectors of three points A, B and C relative to an origin O are given respectively by

$$
\begin{aligned}
& \overrightarrow{O A}=7 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}, \\
& \overrightarrow{O B}=4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}
\end{aligned}
$$

and $\quad \overrightarrow{O C}=5 \mathbf{i}+4 \mathbf{j}-5 \mathbf{k}$.
(i) Find the angle between $A B$ and $A C$.
(ii) Find the area of triangle $A B C$.
14. June 2006 qu. 7

Two lines have vector equations
$\mathbf{r}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}+\lambda(3 \mathbf{i}+\mathbf{j}+a \mathbf{k}) \quad$ and $\quad \mathbf{r}=-8 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}-\mathbf{k})$,
where a is a constant.
(i) Given that the lines are skew, find the value that a cannot take.
(ii) Given instead that the lines intersect, find the point of intersection.
15. Jan 2006 qu. 9

Two lines have vector equations

$$
\mathbf{r}=\left(\begin{array}{r}
4 \\
2 \\
-6
\end{array}\right)+t\left(\begin{array}{r}
-8 \\
1 \\
-2
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{r}
-2 \\
a \\
-2
\end{array}\right)+s\left(\begin{array}{r}
-9 \\
2 \\
-5
\end{array}\right)
$$

where a is a constant.
(i) Calculate the acute angle between the lines.
(ii) Given that these two lines intersect, find a and the point of intersection.
16. June 2005 qu. 3

The line L_{1} passes through the points $(2,-3,1)$ and $(-1,-2,-4)$. The line L_{2} passes through the point $(3,2,-9)$ and is parallel to the vector $4 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$.
(i) Find an equation for L_{1} in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.
(ii) Prove that L_{1} and L_{2} are skew.
17. June 2005 qu. 5
$A B C D$ is a parallelogram. The position vectors of A, B and C are given respectively by

$$
\mathbf{a}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=3 \mathbf{i}-2 \mathbf{j}, \quad \mathbf{c}=\mathbf{i}-\mathbf{j}-2 \mathbf{k}
$$

(i) Find the position vector of D.
(ii) Determine, to the nearest degree, the angle $A B C$.

